Create an implementation of the rotational cipher, also sometimes called the Caesar cipher.
The Caesar cipher is a simple shift cipher that relies on transposing all the letters in the alphabet using an integer key between 0
and 26
.
Using a key of 0
or 26
will always yield the same output due to modular arithmetic.
The letter is shifted for as many values as the value of the key.
The general notation for rotational ciphers is ROT + <key>
.
The most commonly used rotational cipher is ROT13
.
A ROT13
on the Latin alphabet would be as follows:
Plain: abcdefghijklmnopqrstuvwxyz
Cipher: nopqrstuvwxyzabcdefghijklm
It is stronger than the Atbash cipher because it has 27 possible keys, and 25 usable keys.
Ciphertext is written out in the same formatting as the input including spaces and punctuation.
omg
gives trl
c
gives c
Cool
gives Cool
The quick brown fox jumps over the lazy dog.
gives Gur dhvpx oebja sbk whzcf bire gur ynml qbt.
Gur dhvpx oebja sbk whzcf bire gur ynml qbt.
gives The quick brown fox jumps over the lazy dog.
Simply type make chez
if you're using ChezScheme or make guile
if you're using GNU Guile.
Sometimes the name for the scheme binary on your system will differ from the defaults.
When this is the case, you'll need to tell make by running make chez chez=your-chez-binary
or make guile guile=your-guile-binary
.
(load "test.scm")
at the repl prompt.rotational-cipher.scm
reloading as you go.(test)
to check your solution.If some of the test cases fail, you should see the failing input and the expected output.
The failing input is presented as a list because the tests call your solution by (apply rotational-cipher input-list)
.
To learn more about apply
see The Scheme Programming Language -- Chapter 5
Sign up to Exercism to learn and master Scheme with 39 exercises, and real human mentoring, all for free.